

Evaluating Concurrent Robustness of Language Models Across Diverse Challenge Sets

Vatsal Gupta^{1*}, Pranshu Pandya^{1*}, Tushar Kataria², Dan Roth³, Vivek Gupta⁴

¹Indian Institute of Technology, Guwahati; ²University of Utah; ³University of Pennsylvania; ⁴Arizona State University

1. Motivation

Example Premise-Hypothesis pairs

Case Closed

Written	Takahiro Arai
Published	Shogakukan
Eng. Published	SG Shogakukan Asia
Demographic	Shonen
Magazine	Weekly Shonen Sunday
Orig. Run	May 9, 2018 - present
Volumes	2 (List of volumes)

- H_1 : Takahiro Arai wrote 'Case Closed' comic series. (E)
- H_1' : Takahiro Arai wotte 'Case Closed' comci series. (E)
- H_2 : 'Case Closed' is a long-term comic series. (E)
- H_2' : 'Case Closed' isn't a long-term comic series. (C)
- H_3 : 'Case Closed' became the anime Detective Conan (N)
- H_3' : Detective Conan is 'Case Closed' anime version. (N)
- H_4 : 'Case Closed' has run over 5 years. (E)
- H_4' : 'Case Closed' has run over 10 years. (C)
- H_5 : Shogakukan Asia published 'Case Closed' (Eng). (E)
- H_5' : Shogakukan UK published 'Case Closed' (Eng). (C)

Figure: An example of tabular premise and hypotheses from INFOTABS

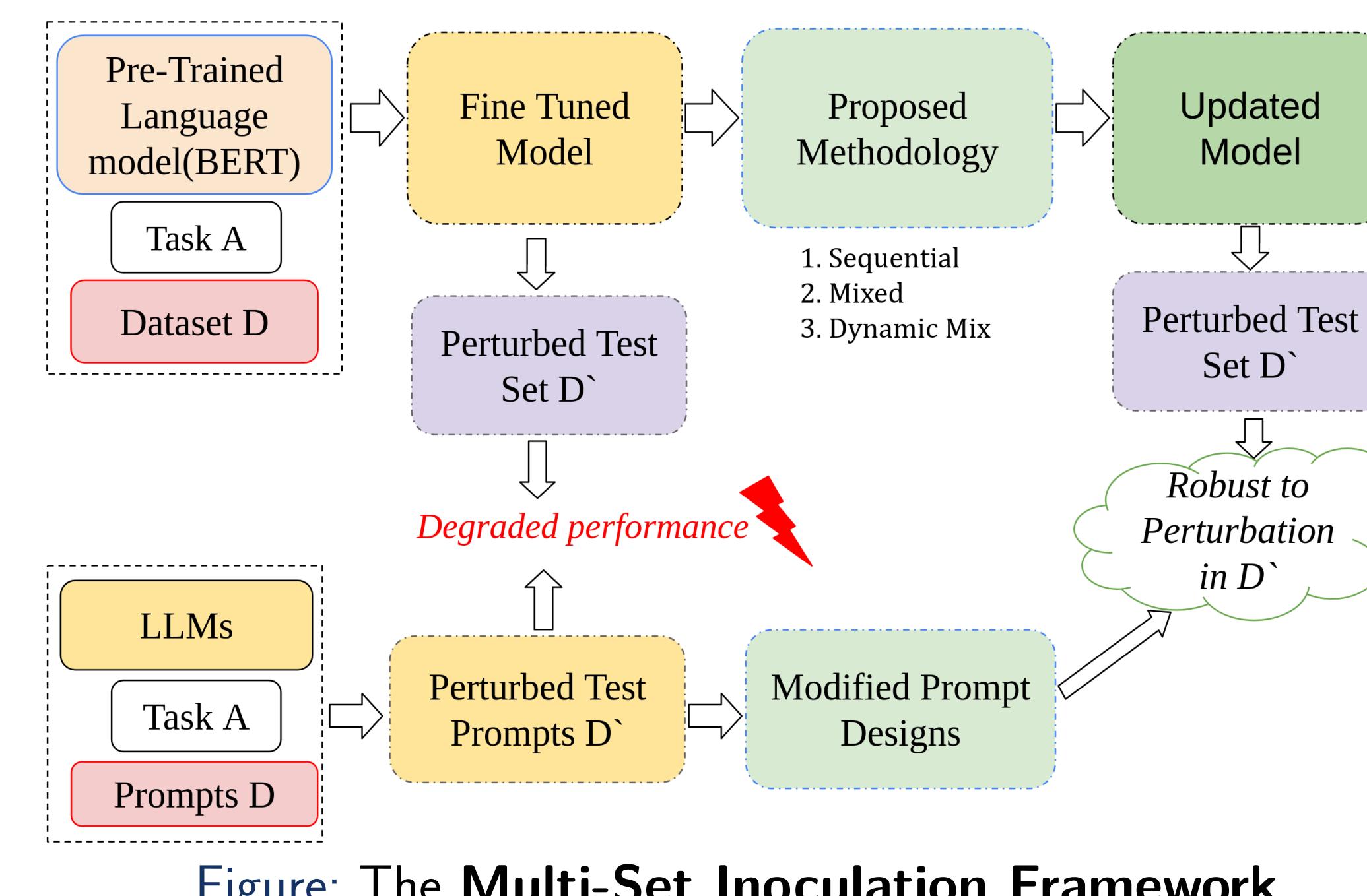
Original hypotheses (H_1, H_2, H_3, H_4, H_5) and perturbed hypothesis ($H_1', H_2', H_3', H_4', H_5'$) representing character, negation, paraphrasing, numeric and location perturbations respectively. Labelled as Entailment, Contradiction or Neutral.

- Robustness Concerns** LMs are highly sensitive to input perturbations, limiting real-world usability
- Evaluation Gaps**: Existing analyses focus on single perturbations, but real-world inputs involve multiple, concurrent perturbations.

2. Our Contributions

- Multi-Set Inoculation Framework**: Proposed a generalizable evaluation approach to gauge model robustness against diverse concurrent perturbations and demonstrated effectiveness on Tabular-NLI tasks with multiple perturbations.
- Covers PLMs and LLMs**: Developed fine-tuning methods for PLMs and prompting strategies for LLMs.
- Comprehensive Analysis**: Extensive analysis to out-of-domain (*Un-Seen*) perturbations and fine-tuning experiments for LLMs.

3. Methodology



Fine-Tuning Strategies for PLMs:

- Sequential Training**: Fine-tuning models on each perturbation type in succession (*sequence*).
- Mixed Training**: Aggregates samples from all perturbation types into a single training set.
- Dynamic Mixed Training**: Adjusts number of samples dynamically for fine-tuning based on model performance on each perturbation, emphasizing harder perturbations.

- Prompting for LLMs**: We leverage Chain-of-Thought grounded prompting with exemplars to enhance concurrent robustness drawing parallels to strategies proposed for PLMs.

4. Tabular NLI-case study

Evaluation Framework

- The models are evaluated on INFOTABS dataset with various perturbations applied to hypotheses.
- 5 perturbations are analyzed: **char**: character swaps, **stan**: paraphrasing, **neg**: negation, **num**: numeric alterations, and **loc**: location changes.
- We compare model performance across both the original and perturbed datasets using accuracy as the primary metric (*same as micro-F1 here*).

5. Results and Discussion

(Q1) Do input perturbations pose a challenge for Language Models (PLMs and LLMs)?

- Yes, The model performs better on the perturbation it is fine tuned on but not on others.

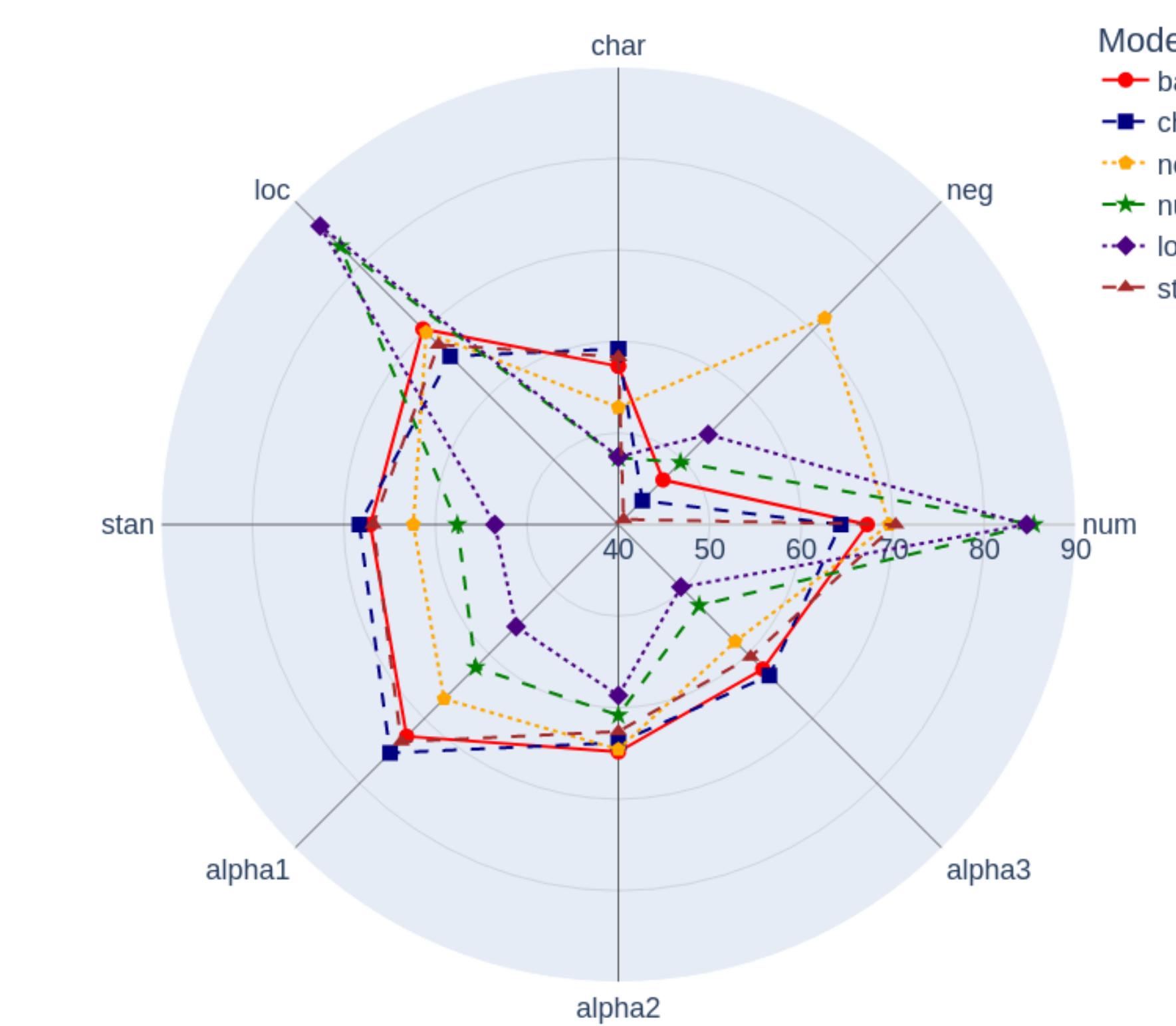


Figure: Performance of model on different perturbations when fine-tuned on a single perturbation (shown in legend)

(Q2) Is there a trade-off between robustness across perturbations and specialization on one type?

- Yes, specialization on one perturbation (e.g., character) often results in a performance drop on others, highlighting the importance of multi-set inoculation.

(Q3) How does Multi-Set Inoculation compare to single-set fine-tuning?

- Multi-Set Inoculation** achieves better average performance across multiple perturbations compared to single-set fine-tuning. It balances between specialization and robustness across diverse input noise.

(Q4) Does perturbation aware prompting improve the robustness of LLMs?

- Yes, prompting LLMs to with examples of possible perturbation improves robustness significantly by making LLMs aware about the possible perturbations. Particularly, **MESP** (Multiple Exemplars Single Prompt) strategies show strong gains across all perturbation types.

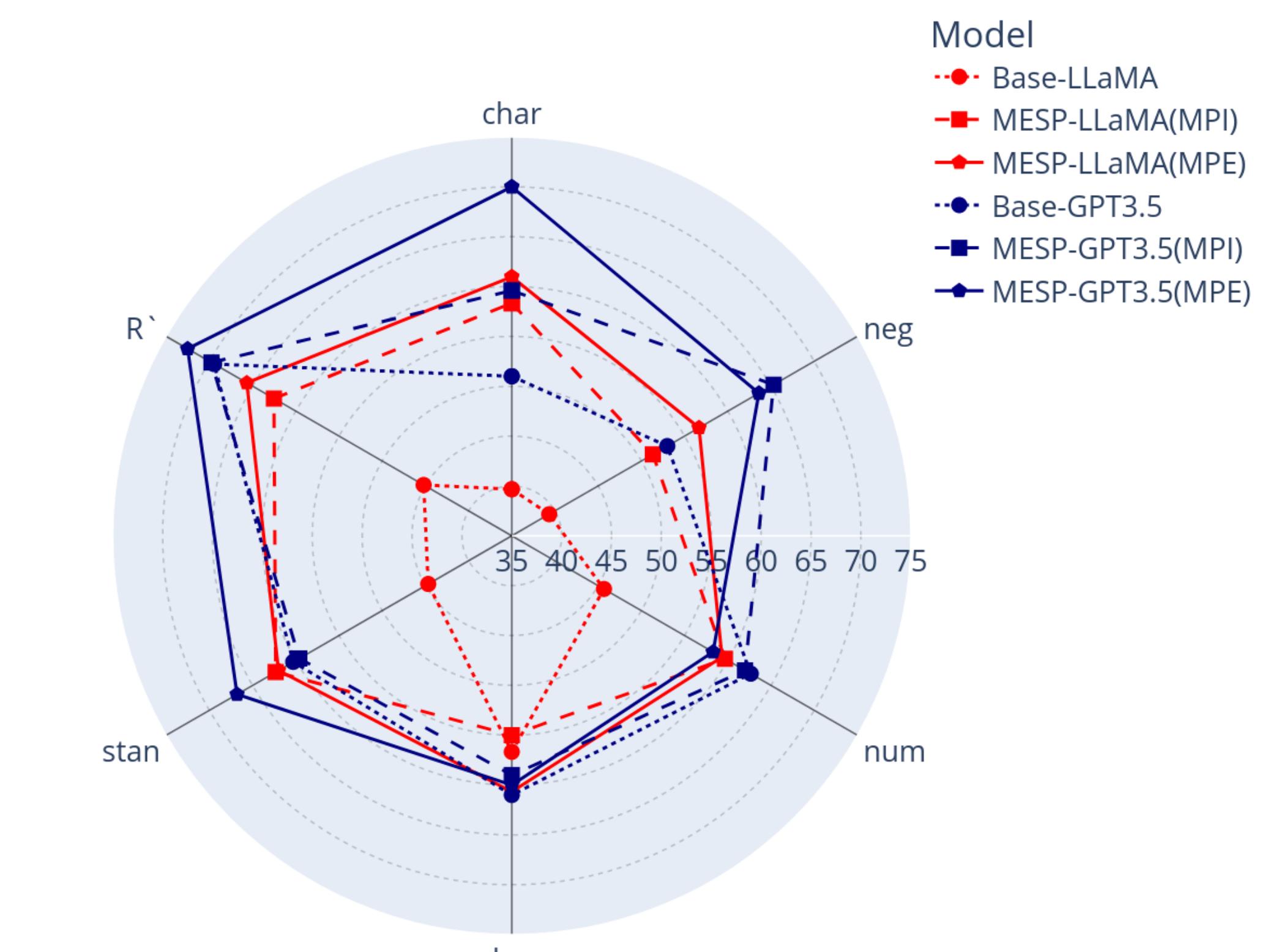


Figure: MESP Results on LLaMA-2-13b and GPT-3.5

6. Future Directions

- Complex Sample Selection** for enhanced model robustness during fine-tuning
- Multiple successive perturbations** to a single sample $[\pi_i(\pi_j(x))]$ to assess their combined effect on model performance

Figure: Scan QR code for paper t.ly/frRtK

Corresponding emails

g.vatsal@iitg.ac.in, p.pandya@iitg.ac.in

Website

msin-infotabs.github.io